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Summary

Background. Many of an individual’s historically recorded personal measurements vary over time, thereby
forming a time series (e.g., wearable-device data, self-tracked fitness or nutrition measurements, regularly
monitored clinical events or chronic conditions). Statistical analyses of such n-of-1 (i.e., single-subject)
observational studies (N1OSs) can be used to discover possible cause-effect relationships to then self-test in
an n-of-1 randomized trial (N1RT). However, a principled way of determining how and when to interpret an
N1OS association as a causal effect (e.g., as if randomization had occurred) is needed.

Objectives. Our goal in this paper is to help bridge the methodological gap between risk-factor discovery
and N1RT testing by introducing a basic counterfactual framework for N1OS design and personalized causal
analysis.

Methods and Results. We introduce and characterize what we call the average period treatment effect
(APTE), i.e., the estimand of interest in an N1RT, and build an analytical framework around it that can
accommodate autocorrelation and time trends in the outcome, effect carryover from previous treatment
periods, and slow onset or decay of the effect. The APTE is loosely defined as a contrast (e.g., difference,
ratio) of averages of potential outcomes the individual can theoretically experience under different treatment
levels during a given treatment period. To illustrate the utility of our framework for APTE discovery and
estimation, two common causal inference methods are specified within the N1OS context. We then apply
the framework and methods to search for estimable and interpretable APTEs using six years of the author’s
self-tracked weight and exercise data, and report both the preliminary findings and the challenges we faced
in conducting N1OS causal discovery.

Conclusions. Causal analysis of an individual’s time series data can be facilitated by an N1RT counterfac-
tual framework. However, for inference to be valid, the veracity of certain key assumptions must be assessed
critically, and the hypothesized causal models must be interpretable and meaningful.

Keywords: causal inference, counterfactual, n-of-1 trial, single subject, time series
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1 Introduction

Celia wants to know if and how exercise affects her body weight. She’s recorded her weight and physical
activity (e.g., step count) over the past couple of years. She looks at her data, and asks, “Is there
evidence that changing my average level of physical activity and maintaining it at that level for a given
period of time would affect my weight? If so, how?”

This example illustrates one of many personal research questions this paper may help answer by introducing a
basic framework for personalized causal analysis. While particular techniques for causal discovery and effect
estimation will later be presented and applied to the author’s own health data, we will remain agnostic to
the actual techniques chosen. Rather, these methods will be used to demonstrate how our framework allows
the analyst to state causal assumptions precisely, thereby strengthening analytical decisions and conclusions
in single-subject research.

Clinical or biomedical research conducted on one subject or individual is often called a single-subject,
single-case, or n-of-1 study, and an individual who undertakes an n-of-1 study on herself is said to self-track
her own data. Such studies have been described as idiographic (i.e., population-of-one) in the psychological
literature, in contrast to a nomothetic (i.e., population-of-many) study that characterizes a group of indi-
viduals [1]. N-of-1 studies are used in a variety of fields, including clinical trials and biomedical research
[2; 3; 4; 5; 6; 7]. Guidance on n-of-1 trial implementation and analysis has been codified by various inves-
tigators [8; 9; 10; 11], and by the U.S. Department of Health and Human Services Agency for Healthcare
Research and Quality (AHRQ) [12]. N-of-1 trials have even been offered as a clinical service in Australia,
Canada, and the United States [13; 14]. In the field of mobile health (mHealth), Chen et al (2012) [15] pro-
posed that mobile or wearable devices may help facilitate implementation of n-of-1 trials. Barr et al (2015)
[16] are currently running a randomized controlled trial (RCT) to assess the feasibility and effectiveness of
helping chronic-pain patients and their clinicians conduct n-of-1 trials using a smartphone app. Both AHRQ
and a recent Nature article have even included n-of-1 trials under “personalized medicine” [12; 17].

While statistical methods for causal inference have largely been developed for n-of-1 randomized trials
(N1RTs), to date there are few if any such methods for n-of-1 observational studies (N1OSs). We define
an N1OS as a non-randomized single-subject study with the two-part goal of discovering both causal effects
and possible N1RT treatments for subsequent testing of putative effects. Toward this end, we propose that
the randomization-based approach of the Neyman-Rubin-Holland counterfactual framework [18; 19; 20] can
be used to analyze self-tracked N1OS time series. In this literature, marginal structural models and the
time-varying g-formula have been extensively developed for analyzing time-varying effects in longitudinal
health data [21; 22; 23]. However, these two methods are used to conduct inference on average effects
over a target population of many individuals, and hence may not readily apply to N1OSs. Randomized
study designs more closely related to N1RTs (that may therefore be better suited to developing N1OS
methods) include micro-randomization trials (MRTs) [24] and sequential multiple assignment randomized
trials (SMARTs) [25], which are commonly used to develop just-in-time adaptive interventions (JITAIs) [26].
While these approaches focus on optimizing personalized treatments by finding the best set of treatment
rules (i.e., rather than treatments) applicable to each individual, they still rely on averaging over a set of
such individualized treatment regimes. (A MRT or SMART might be understood as a series of N1RTs [12].)

Causal inference methods that use only a single unit’s time series data do provide some direction. Aalen
and Frigessi (2007) [27] and Aalen et al (2012) [28] proposed a mechanism-focused approach, rather than
a counterfactual one. White and Kennedy (2009) [29] demonstrated equivalences between Granger and
structural causality under a key assumption of conditional exogeneity, and derived useful methods for
causal analysis of time series. White and Lu (2010) [30] drew formal connections between Granger and
counterfactual-based causality, and Lu et al (2017) [31] showed how these concepts applied to the setting of
cross-sectional and longitudinal data analysis. A good survey of relevant causal inference time series concepts
can be found in Eichler (2012) [32], Eichler and Didelez (2012) [33], and Eichler (2013) [34], who connect
the theory behind these ideas to those of various causal graphing systems. Unfortunately, almost all of these
developments focus on econometric or financial applications with no direct analogue to the health settings
of N1RTs.

The goal of this paper is to help bridge the methodological gap between risk-factor discovery and N1RT
testing by introducing a basic counterfactual framework for N1OS design and analysis. The rest of this paper
is organized as follows. In Section 2, we briefly review the counterfactual framework. We then define an
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idiographic causal estimand called the average period treatment effect in Section 3, present a framework for
its specification and analysis, and specify two common estimation methods within this framework. In Section
4, we estimate average period treatment effects relevant to the author’s weight and physical activity data
using our framework. We conclude in Section 5 with a brief discussion, and we propose a basic procedure
for performing n-of-1 causal discovery. Further notes and derivations are provided in an online Appendix.
All analyses were conducted in R version 3.3.1.

2 Counterfactual-based Causal Inference

Throughout this article, we use the following notation. Random variables and fixed values are written in
upper-case and lower-case, respectively. Let p(A = a) denote the probability mass or density of random
variable A at a, with shorthand p(a). Let {(A)} denote a stochastic process; i.e., a time series of random
variables. For any index j, let {(j)} denote a sequence. For any random variable B, let B|A denote the
event B conditional on A, with shorthand B|a for B|A = a. Let B ⊥⊥ A denote statistical independence of
B and A.

Suppose we have a scalar-valued function of random variables, as are specified in structural equation
models [35]. Let the left side (i.e., area to the left of the equal sign) consist of an outcome or output
variable, and let the right side consist of three components: predictors, a completely random zero-mean
error or disturbance term E that is independent of all predictors, and a function relating these two sets of
input variables to the outcome, with the error term suppressed in the function notation unless needed for
conceptual clarification. Suppose this function is constrained such that all inputs must temporally occur
before the outcome. We define a data-generating process (DGP) to be such a time-constrained function (e.g.,
the univariate structural equations in White and Lu, 2010 [30]), and call the structural equation expression
of a DGP a data-generating model (DGM).

Counterfactuals have been broadly defined in terms of different types of interventions [36; 32]. We take a
statistics-based approach, and consider the types of effects identifiable from randomized interventions (i.e.,
randomly selected, assigned, or otherwise manipulated) [18; 19; 20]. Such causal effects are defined in terms
of statistical associations between a treatment (or intervention) and an outcome if the treatment mechanism
is ignorable (i.e., hypothetical effects at different treatment levels remain unchanged regardless of actual
treatment assignment). For example, ignorability is implied if the treatment is randomized. In this paper,
we only consider the case of ignorability implied by randomization, and henceforth write “treatment” in place
of “randomized treatment”. We define an exposure to be a measured phenomenon that may be considered
a treatment; i.e., all treatments are exposures, while the converse does not hold in general. Henceforth, we
use “causal effect”, “treatment effect”, and “effect” interchangeably.

Let Y = gY
(
X,U

)
denote the DGP of observed outcomes, where X represents an exposure, and U

represents the set of all other (possibly unobserved) outcome predictors. For a given individual, consider
a hypothetical value of Y under exposure level a and predictor values U if X and U are independent.
We formalize this concept by defining the counterfactual (i.e., counterfactual outcome) of Y corresponding
to X = a and U as Y a(U) = gYa

(
U,X ⊥⊥ U

)
, where a represents a fixed value that is not a predictor.

Under causal consistency (CC), the observed and counterfactual outcomes under X = a are identical; i.e.,
gY
(
X = a, U, E

)
= gYa

(
U,X ⊥⊥ U, E

)
. The term “counterfactual” is used because if X = a is in fact

observed, then observation of Y a′ for any a′ 6= a is “counter to fact” (i.e., Y a′ cannot be observed under
CC). A counterfactual is also called a potential outcome because it is a potentially observable outcome
resulting from an exposure.

Each individual i has the counterfactual Y a
i (ui) = gYa

(
ui, X ⊥⊥ U, Ei

)
at U = ui. A contrast between

EEi
(
Y a
i (ui)

)
and EEi

(
Y a′

i (ui)
)
, where E(·) denotes the expectation function, is called an individual treat-

ment effect (ITE). This is the desired estimand of counterfactual-based causal inference (hereafter, causal
inference). Unfortunately, an ITE is generally not identifiable because for any individual, we cannot simulta-
neously observe both Y a

i (ui) and Y a′

i (ui) (i.e., the fundamental problem of causal inference [20]), much less
estimate their expectations. Now let E

(
Y a(u)

)
represent the average or mean counterfactual corresponding

to a taken over the population of individuals with U = u, often conceptualized as the expected outcome
if everyone in such a population is randomized to treatment a. While not directly observable due to the
fundamental problem, this quantity may be consistently estimated if U is either fully observed, or partly ob-
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served and treatment is randomized (see Appendix equations (1) and (3)). Hence, comparisons or contrasts
of E

(
Y a(u)

)
and E

(
Y a′(u)

)
may be of interest.

Many authors introduce the counterfactual as Y a, with attendant contrasts between E
(
Y a
)

and E
(
Y a′
)

called average treatment effects (ATEs). These are often the primary estimands of interest because in nomo-
thetic studies with randomized interventions, all other outcome predictors U need not be observed in order
to consistently estimate E

(
Y a
)

(see paragraph below on estimation). In particular, Y a = EU

(
Y a(U)

∣∣X =

a,X ⊥⊥ U
)

= EU

(
Y a(U)

∣∣X ⊥⊥ U) averages over all other true outcome predictors, as does E(Y a) by impli-
cation. This approach is particularly useful when there is little heterogeneity in the treatment effects across,
for example, settings, contexts, groups, or individuals, that can be formalized using U . (Dependence of the
effects on U is often the main interest in the literature on heterogeneous treatment effects, which focuses on
conditional ATEs [37].) If E

(
Y a
)
6= E

(
Y a′
)

for some a′ 6= a, then X is said to have an ATE on Y , and we
will call X a causal predictor (i.e., cause) of Y . For example, if treatment is randomized as X = 0, 1, then
possible ATEs include E

(
Y 1
)
− E

(
Y 0
)

and E
(
Y 1
)
/E
(
Y 0
)
. If all DGP predictors are causal, we will call

this DGP a causal process, and its corresponding DGM a causal model.
Estimation of any of these quantities, however, requires observed (i.e., not counterfactual) outcomes.

Let R = 1 denote the implementation of randomization to X = a, and let R = 0 denote the absence
of randomization (i.e., corresponding with the ecological, natural, or otherwise undisturbed state of X).
Suppose the outcome DGP might vary depending on whether or not X is randomized, denoted as Y =
gY (X,U,R). Then the same outcome will be generated whether or not X is randomized if gY (X,U,R, E) =
gY (X,U, E). We will refer to this equivalence as data-generation invariance (DGI) because it describes
invariance of the DGP to randomization status. Importantly, note that if DGI holds, then p(y|x, u, r) =
p(y|x, u), while the converse is not true in general. If DGI and CC both hold, then E

(
Y a
)

can be identified
using observed outcomes if R = 1 (see Appendix equations (1)–(2)). If R = 0 (as in Section 3.3), then
p(u|r) = p(u) is also needed to identify E

(
Y a
)
. We will call this last condition distributional invariance (DI);

i.e., all other outcome predictors U are independent of the randomization status of X. (In the Appendix,
we relate our conceptual approach and assumptions to the standard ITE-based statistics concepts of causal
consistency and conditional ignorability/exchangeability.)

All observations in an N1OS belong to a single individual, and in this sense constitute a single context.
Hence, in beginning to develop counterfactual theory for single-subject causal analysis, we will focus on some
individualized quantity analogous to the ATE; one that averages over other outcome predictors specific to
that individual throughout the timespan of her self-tracked observations. Future methods can and should
be developed to fashion conditional ATEs that more properly account for the varied sub-contexts within an
individual’s own experiences (e.g., seasonality). Finally, note that while we can rely on randomization to
enable estimation of an ATE, we generally consider corresponding DGMs that are fit in practice to be, at
best, approximations to the hypothesized true causal mechanism (i.e., the true and unknown processes by
which a cause produces an effect).

3 Average Period Treatment Effect

In this section, we define an average treatment effect for analytical use in both randomized and non-
randomized idiographic settings, and introduce a framework for specifying and analyzing this average effect.
Two common estimation methods are specified within this framework, and stationarization is briefly illus-
trated as a way to model confounding. We rely on formalisms similar to the general dynamic structural
equations of White and Kennedy (2009) [29] and White and Lu (2010) [30], Section 22.5 in Eichler (2012)
[32], and Section 5 of Eichler (2013) [34]. Throughout, we assume that DGI and CC hold.

3.1 Definition

Let {(X,Y )} represent a stochastic process. The standard N1RT is a randomized crossover design used to
assess an ATE of X on Y . However, methods for conducting inference regarding ATEs are almost exclusively
nomothetic. In particular, researchers generally wish to draw inference on the mean counterfactual taken
over a population of individuals, as mentioned previously. Because there is only one individual in an n-of-1
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study, the ATE definition in this idiographic setting needs to be modified. The definition that follows is
motivated by standard N1RT concepts [12].

In the basic N1RT, a two-level treatment X is randomized at each time period t, defined as a set of
measurement time points. Let t(j) denote a time point within period t for j = 1, . . . ,mt. Treatment
level is randomized per period only at t(1), and is otherwise kept constant; i.e., randomized assignment
Xt(1) = a implies Xt(j) = a for j ∈ (2, . . . ,mt) if mt > 1. We will call a treatment administered in a
period consisting of only one time point (i.e., mt = 1) a point treatment, and write t instead of t(1) in such
cases; otherwise, a treatment may be called a period treatment for clarification. Consider the simple case
of a point treatment, where Yt+1 has a time-invariant association with Xt and other predictors Wt, there is
no autocorrelation or time trend in {(W )} (e.g., a white noise process, which is a strictly stationary time
series), and {Xt′ ,Wt′} ⊥⊥ Yt+1 for all t′ < t. Suppose each outcome Yt+1 is independent of and identically
distributed with all other outcomes, conditional on {Xt,Wt} (where this relationship is constant over time).
Hence, the outcome DGP is Yt+1 = gY (Xt,Wt). There is no autocorrelation in {(Y )}, and because p(yt+1),
p(xt), and p(wt) are constant over time, no time trend exists in {(Y,X,W )}.

Since we are interested in the effect of Xt on Yt+1, it is reasonable to think of the pair {Xt, Yt+1} as an
idiographic unit of observation. Let Y a

t+1 represent the counterfactual of Yt+1 corresponding to Xt = a. We

define a period treatment effect (PTE) to be a contrast between Y a
t+1 and Y a′

t+1 for a′ 6= a, and call a contrast

of E
(
Y a
t+1

)
and E

(
Y a′

t+1

)
an average period treatment effect (APTE). The APTE is the estimand of interest

in an N1RT. This mean counterfactual represents the expected outcome if the individual is randomized
to treatment a at t, but not over all time points, as would be directly analogous to the interpretation of
an ATE mean counterfactual (i.e., taken over all individuals). This is an important distinction, because
randomization to a at all time points may violate the DI assumption, which is a key condition needed for
identification of an APTE in the presence of confounding, as discussed in Section 3.3.

In our simple case, there is no carryover of effects from any past periods. There is no slow onset/activation
of the APTE (e.g., due to delayed uptake of the treatment), and neither is there any slow decay/deactivation.
Both {(X)} and {(Y )} are strictly stationary processes integrated of order 0 [38], thus permitting straight-
forward estimation of the APTE.

3.2 N-of-1 Counterfactual Framework

We present the following framework for specifying an APTE that allows for autocorrelation or a time trend
in the outcomes, or carryover or slow onset/decay of the effect. Suppose observations or measurements occur
at evenly spaced time points indexed by j. For any random variable B, let B̄j = (Bj , Bj−1, Bj−2, . . .) denote
the history of B at j+ 1. Let Y and X denote the outcome and treatment of interest, respectively, where X
is a categorical variable. Suppose Yj+1 = gYj

(
X̄j , Ȳj , V̄j

)
in general, where V̄j represents all other predictors

of Yj+1. Likewise, suppose in general that Xj = gXj−1(Ȳj−1, X̄j−1, Z̄j−1), where Z̄j−1 represents all other

predictors of Xj and V̄j ∩ Z̄j−1 6= ∅.
We first distinguish between a treatment and an exposure. If Rj−1 = 1, then Xj has no predictors by

definition. We denote this mechanistic relationship by re-specifying the DGP as Xj = gXj−1(Ȳj−1, X̄j−1, Z̄j−1,

Rj−1); in particular, gXj−1(Ȳj−1, X̄j−1, Z̄j−1, Rj−1 = 1, Ej−1) = gXj−1(Rj−1 = 1, Ej−1). For example, suppose
randomization to either treatment or control occurs at every time point; i.e., Xj = 1, 0, respectively. Then
one reasonable DGM is Xj = I

(
Ej−1 > Pr(Xj = 1|Ȳj−1, X̄j−1, Z̄j−1, Rj−1)

)
, where I(b) = 1 if expression b

is true and I(b) = 0 otherwise, and Ej−1 is uniformly distributed between 0 and 1.
Treatment periods are constructed as follows. Partition {(j)} into {(t)} such that t =

(
t(1), . . . , t(mt)

)
,

where treatments in period t are observed at each point t(j); i.e., {(t)} is a structured time series. Let
Xt(j) denote the categorically defined treatment at time point j = 1, . . . ,mt in period t. Randomization
for period t can be implemented at {Rt(j−1) : j ∈ (1, . . . ,mt)}. The last outcome for period t occurs at
t(mt + 1) ≡ t + 1(1), and the outcomes for treatment period t are {Yt(j+1) : j ∈ (1, . . . ,mt)}. Our general
formulation permits randomization of multiple treatments within a period; e.g., (a1, . . . , amt

) could represent
a dynamic treatment regime [39] in a JITAI, MRT, or SMART. However, we will only consider the standard
N1RT case where only the first treatment is randomized, and then held constant for the rest of the period;
i.e., Rt(0) = 1 and Rt(j−1) = 0 for j ∈ (2, . . . ,mt), and implies Xt(j) = a for j ∈ (1, . . . ,mt). In this way, an
N1RT might be a type of cluster-randomized trial in which a period constitutes a cluster, or perhaps a kind
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of non-adaptive MRT with period treatments.
Suppose each treatment effect is bounded, and may stabilize or destabilize over time after treatment

introduction. We define the association (e.g., coefficient in a linearized model) of an outcome with a pre-
dictor as stable if their associations at {t(j), t′(j)} are identical for any pair of periods {t, t′ 6= t} at any
j. If all outcome-predictor associations are stable, then gYt(j)(·) = gYt′(j)(·) for exactly equal input values

at {t(j), t′(j)}, and we write gYj (·) instead. We define the association of an outcome with a predictor as
period-stable if their associations at {t(j), t(j′)} are identical for any pair of points {j, j′ 6= j} at any t. If
all stable outcome-predictor associations are period-stable, then gYj (·) = gYj′ (·) for exactly equal input values

at {j, j′}, and we write gY (·) instead. Henceforth, we only consider stable associations for simplicity.
Suppose we have randomized period treatments (i.e., Rt(0) = 1 and Rt(j−1) = 0 for j ∈ (2, . . . ,mt))

with period-stable associations. In the rest of this section, we assume all distributional statements are
conditioned on Rt(j−1), and therefore suppress this notation. For any random variable B, let B̄t(j) =

(Bt(j), Bt(j−1), . . . , Bt(1), Bt−1(mt−1), Bt−1(mt−1−1), . . .). Suppose the outcome DGP is Yt(j+1) = gY
(
Xt(j), V̄t(j)

)
where there is no autocorrelation or time trend in {(V )}. Hence, there is no carryover or slow onset/decay,
and no autocorrelation or time trend in either {(X)} or {(Y )}. The mean counterfactual corresponding
to Xt(j) = a is therefore E

(
Y a
t(j+1)

)
= E

(
Yt(j+1)

∣∣Xt(j) = a
)
. (See Appendix equations (1)–(3) for deriva-

tions of this and all remaining mean counterfactual expressions stated in this section.) Let αt(j+1)(a
′, a)

denote a contrast function of E
(
Y a′

t(j+1)

)
and E

(
Y a
t(j+1)

)
, where a′ 6= a. We now redefine the APTE as

a function of some pre-specified subset {αt(k+1)(a
′, a) : k ∈ k}, where k ⊆ {1, . . . ,mt}. In the current

simple case, αt(j+1)(a
′, a) = αt(a

′, a) for j ∈ (1, . . . ,mt) because all associations are period-stable, and
αt(a

′, a) = α(a′, a) for all t because all associations are stable. Hence, k = (1, . . . ,mt) might be specified,
along with apte(a′, a) = α(a′, a) for any {a′, a}.

Suppose autocorrelation in {(Y )} is also present, such that Yt(j+1) = gY
(
Xt(j), Ȳt(j), V̄t(j)

)
. Note that

{(X)} Granger-causes {(Y )}, a related but distinct causal concept; i.e., {(X)} can Granger-cause {(Y )}
even if {(X)} is not a randomized-treatment series [40; 41; 42]. A model for E

(
Yt(j+1)

∣∣Xt(j), Ȳt(j)

)
can

be specified and used to estimate an APTE specified with E
(
Y a
t(j+1)(ȳt(j))

)
= E(Yt(j+1)|Xt(j) = a, ȳt(j)).

Note that specifying an APTE with E
(
Y a
t(j+1)

)
= EȲt(j)

{
E(Yt(j+1)|Xt(j) = a, Ȳt(j))

}
is not straightforward

because Rt(j−1) = 1 only at j = 1; we will see how to handle cases in which Rt(j−1) = 0 in Section 3.3.
Suppose further that there is a time trend in {(Y )}. The same DGP applies, but {(Y )} is no longer

stationary, which is required for consistent estimation of model parameters. One option is to define this
trend to be a function of some predictors of Yt(j+1) (see Section 3.5 and Appendix equation (3)), and

model E
(
Yt(j+1)

∣∣Xt(j), Ȳt(j), V̄t(j)

)
in order to estimate an APTE specified with E

(
Y a
t(j+1)(ȳt(j), v̄t(j))

)
=

E(Yt(j+1)

∣∣Xt(j) = a, ȳt(j), v̄t(j)). Explicit modeling might be avoided by using a randomization scheme that
balances the treatments across periods (e.g., a randomized-block design limiting the viable block permuta-
tions, where a block is defined as a set of consecutive periods). However, even this approach tacitly assumes
some general structure to the trend (e.g., linear, quadratic) in order to determine how balance can best be
achieved.

Now suppose carryover is present from ` ∈ N lagged effects, such that Yt(j+1) = gY
(
Xt(j), X̄t−1:`−1, Ȳt(j),

V̄t(j)

)
where X̄t:` = (Xt(1), Xt−1(1), . . . , Xt−`(1)). (Since all elements of X̄t:` are randomized, carryover is

a type of causal interference [43] in that a given period’s potential outcomes are a function of possible
treatment levels in both the current and past periods.) The conditional mean counterfactual corresponding
to Xt(j) = a is therefore E

(
Y a
t(j+1)(x̄t−1:`−1, ȳt(j), v̄t(j))

)
= E(Yt(j+1)|Xt(j) = a, x̄t−1:`−1, ȳt(j), v̄t(j)). The

DGM of gY
(
Xt(j), X̄t−1:`−1, Ȳt(j), V̄t(j)

)
that needs to be specified and fit is usually unknown in practice,

unfortunately, but washouts may be used to avoid having to fully specify this DGM.
A washout period can be defined in order to eliminate carryover. In a designed-washout approach,

treatment is not administered during the washout period, which would then be excluded from the main
analysis to estimate the APTE. However, not administering treatment is itself a treatment. Let a0 denote
such a washout treatment (henceforth, washout). Note that the control treatment and washout need not be
identical, as in the case of an active control; nor must the washout equal an exposure that occurs naturally
(i.e., outside of a randomized trial). A designed-washout approach is a type of randomized-block design in
which at least one washout period is assigned immediately following the treatment period (i.e., the block
is at least two periods long). Suppose enough washouts are assigned to cover all lags; i.e., X̄t−1:`−1 = a0
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where a0 is a 1 × ` vector with every element equal to a0. Also suppose that the washouts are assigned
properly, such that p

(
yt(j+1)

∣∣Xt(j) = a, X̄t−1:`−1 = a0, ȳt(j), v̄t(j)

)
= p

(
yt(j+1)

∣∣Xt(j) = a, ȳt(j), v̄t(j)

)
. Hence,

a model for E
(
Yt(j+1)

∣∣Xt(j), Ȳt(j), V̄t(j)

)
can be specified and used to estimate an APTE specified with

E
(
Y a
t(j+1)(ȳt(j), v̄t(j))

)
= E(Yt(j+1)

∣∣Xt(j) = a, ȳt(j), v̄t(j)). (Note that this additionally requires observing all

other predictors V̄t(j).) For example, if ` = 1 and mt = 1 for all t, then it can be shown that washouts are
properly assigned if a washout period always follows a treatment period, and vice versa.

In an analytic-washout approach, each period consists of multiple measurements, and the washout sub-
period is defined as a set of measurements occurring early in the period (i.e., the set of early measure-
ments with effects from previous time periods). In conducting the main APTE analysis, this approach
involves not collecting, excluding, down-weighting, or otherwise reducing the influence of washout sub-
period observations on estimation. Analytic washouts may be applied if Yt(k+1) = gY

(
Xt(k), Ȳt(k), V̄t(k)

)
for any k ∈ kpostwash, where kpostwash ⊂ {1, . . . ,mt} denotes the post-washout subperiod; i.e., the later
measurements of a period, when there are no lingering carryover effects. In such cases, an APTE speci-
fied with E

(
Y a
t(k+1)(ȳt(k), v̄t(k))

)
= E(Yt(k+1)

∣∣Xt(k) = a, ȳt(k), v̄t(k)) can be estimated. Because all associa-

tions are period-stable, αt(k+1)(a
′, a) = αt(a

′, a) for k ∈ kpostwash, and because all associations are stable,
αt(a

′, a) = α(a′, a) for all t. The APTE might then be specified as apte(a′, a) = α(a′, a).
Finally, suppose slow onset or decay may be present, such that stable effects may no longer be period-

stable, implying Yt(j+1) = gYj
(
Xt(j), X̄t−1:`−1, Ȳt(j), V̄t(j)

)
. Suppose subperiod-stable effects are present for a

subset kstable ⊂ {1, . . . ,mt} (i.e., the stable subperiod), such that Yt(k+1) = gY
(
Xt(k), X̄t−1:`−1, Ȳt(k), V̄t(k)

)
for any k ∈ kstable; i.e., the middle or later measurements of a period, when an effect is fully activated and
stable, before it begins deactivating (if applicable). In such cases, we will refer to the subperiod intervals
before and after the stable subperiod as the stabilization and destabilization subperiods, respectively. An
APTE specified with E

(
Y a
t(k+1)

)
can be estimated by specifying a model for E

(
Yt(k+1)

∣∣Xt(k) = a, Ȳt(k), V̄t(k)

)
for k ∈ kpostwash ∩ kstable. Because all other associations are period-stable, αt(k+1)(a

′, a) = αt(a
′, a) for

k ∈ kpostwash∩kstable, and because all associations are stable, αt(a
′, a) = α(a′, a) for all t. The APTE might

then be specified as apte(a′, a) = α(a′, a). Note that the stabilization subperiod may be equivalent to the
washout subperiod if the current and previous treatment levels differ. For example, this could be the case
for a binary treatment consisting of mutually exclusive treatment levels; e.g., administration or removal of
one active treatment that does not destabilize.

3.3 Confounding

Suppose we now have period exposures instead of treatments; i.e., Rt(j−1) = 0 for j ∈ (1, . . . ,mt) at all
t. Suppose there is no autocorrelation or time trend in {(Z)}, and Xt(j) = gX(W̄X

t−1(mt−1), Rt(j−1) = 0) =

gX(W̄X
t−1(mt−1), Rt(0) = 0), where W̄X

t−1(mt−1) ⊆ {X̄t−1:`−1, Ȳt−1(mt−1), Z̄t−1(mt−1))} and V̄t(j) ∩ Z̄t−1(mt−1) 6=
∅ in general. Let W̄Y

t(j) ⊆ {X̄t−1:`−1, Ȳt(j), V̄t(j)}, and let C̄t(1) 6= ∅ represent W̄Y
t(j) ∩ W̄

X
t−1(mt−1).

If a variable B is a causal predictor of both Xt(j) and Yt(j+1), we say that B confounds the relationship
between Xt(j) and Yt(j+1). Suppose every element of C̄t(1) is a confounder. This assumption may be
too strong to defend in practice, but can be relaxed using the rules of d-separation [44] (specifically, to
avoid “M-bias”), a topic beyond the scope of this paper. Hence, E

(
Yt(j+1)

∣∣Xt(j) = a,Rt(j−1) = 0
)

=

EW̄Y
t(j)

{
E(Yt(j+1)|Xt(j) = a, W̄Y

t(j), Rt(j−1) = 0)
∣∣Xt(j) = a,Rt(j−1) = 0

}
6= E

(
Y a
t(j+1)

)
in general. However, if

Yt(j+1) = gYj

(
Xt(j), W̄

Y
t(j), Rt(j−1), Et(j)

)
= gYj

(
Xt(j), W̄

Y
t(j), Et(j)

)
, DGI

p
(
w̄Y

t(j)

∣∣rt(j−1)

)
= p

(
w̄Y

t(j)

)
, DI

then

E
(
Y a
t(j+1)

)
= EW̄Y

t(j)

{
E
(
Yt(j+1)

∣∣Xt(j) = a, W̄Y
t(j), Rt(j−1) = 0

) ∣∣∣Rt(j−1) = 0
}
, (1)

which is identifiable from observed data if the inner expectation DGM is known (see Appendix equation
(5)).

We will jointly refer to DGI and DI as invariance to randomization (hereafter, invariance), a concept
akin to that of “distributional stability”; i.e., the joint probability distribution of predictors, outcomes, and
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covariates is invariant to the predictor’s intervention regime (e.g., observational vs. randomized) [45; 46; 47;
32]. Invariance is a powerful condition because if it holds, then an APTE specified with E

(
Y a
t(j+1)

)
can be

estimated in the absence of randomization. Hence, in discussing the strength of causal inference, it is crucial
for the analyst to acknowledge that she is making an assumption that invariance holds, and to assess and
report the veracity of this assumption.

Identifiability of an APTE specified with E
(
Y a
t(j+1)

)
if Rt(j−1) = 0 also relies on the positivity condition

that p
(
xt(j), w̄

Y
t(j)

)
> 0 for all xt(j) and w̄Y

t(j); i.e., all possible combinations of Xt(j) and W̄Y
t(j) are theoretically

observable. (Note that positivity is implied if Rt(j−1) = 1.) We implicitly assumed that this condition holds
in deriving (1), and its importance will become particularly apparent in the IPW formula of Section 3.4.

In general, post-washout and stable subperiods are not properly assigned (let alone specified a priori)
in non-randomized settings. Instead, kpostwash and kstable can be assumed, and an APTE specified with
E
(
Y a
t(k+1)

)
can be estimated by specifying a model for E

(
Yt(k+1)

∣∣Xt(k) = a, W̄Y
t(k), Rt(j−1) = 0

)
for k ∈

kpostwash ∩ kstable. As in the randomized case, because all other associations are period-stable, and all
associations are stable, the APTE might then be specified as αt(k+1)(a

′, a) = αt(a
′, a) = apte(a′, a). The

analyst could then vary the assumed values of kpostwash and kstable, and characterize how the estimated
APTE changes.

3.4 Estimation

The following two causal inference methods are commonly used to estimate an ATE in the presence of
confounding, assuming positivity and invariance hold. Here, we specify them for an APTE. If the DGM for
Yt(j+1) = gY

(
Xt(j), W̄

Y
t(j)

)
, also called an outcome model, is correctly specified, then (1) can be estimated

directly. This is known as the g-formula method [48; 49], and in the epidemiological literature is also
called direct standardization [50; 23], or stratification elsewhere [51; 52]. The key insight is that the outer
expectation is taken over W̄Y

t(j), not over
(
W̄Y

t(j)|Xt(j) = a
)

as is required by E
(
Yt(j+1)|Xt(j) = a,Rt(j−1) = 0

)
.

For a binary-valued Xt(j), another strategy is to instead argue that the functional form of Pr(Xt(j) =
1|W̄X

t−1(mt−1), Rt(j−1) = 0), also called the propensity model, is correctly specified; e.g., gX(W̄X
t−1(mt−1), Rt(j−1) =

0, Et−1(mt−1)) = I
(
Et−1(mt−1) < Pr(Xt(j) = 1|W̄X

t−1(mt−1), Rt(j−1) = 0)
)

where Et−1(mt−1) is uniformly dis-
tributed between 0 and 1. An APTE specified with

E
(
Y a
t(j+1)

)
= E

{
I(Xt(j) = a)Yt(j+1)

Pr(Xt(j) = a|W̄X
t−1(mt−1), Rt(j−1) = 0)

∣∣∣∣Rt(j−1) = 0

}
IPW formula

can then be estimated (see Appendix for derivation). This is known as the method of inverse probability
weights (IPWs), which uses the reciprocal (i.e., inverse) of the conditional probability of X. The condi-
tional probability that Xt(j) = 1 is also known as the propensity score because it reflects the propensity of

receiving exposure a = 1 [53]. Consistent estimation of APTEs specified with E
(
Y a
t(j+1)

)
is often performed

using a Horvitz-Thompson ratio estimator (see Appendix). (Many common matching methods also use the
propensity score as a way to balance covariate values between exposure levels in order to estimate putative
treatment effects; e.g., by selecting subsamples of the original sample.)

Note that the g-formula method does not require specification of the propensity model, while the IPW
method does not require specification of the outcome model. An advanced technique called the augmented
IPW or doubly robust estimation method is useful for gaining statistical efficiency if specifications of both
the propensity and outcome models may be reasonably asserted as true, with only one of the two required
to be correctly specified to ensure consistent estimation of model parameters.

3.5 Stationarization

Following Lu and Zeger (2007) [54], in this section we argue that stationarization may be understood as a way
to model confounding. Estimation of the mean counterfactual requires both the predictor and outcome time
series to be weak- or wide-sense stationary (WSS) processes [38]. If a time series is not WSS, the methods
of taking first differences (or pre-whitening) or de-trending are commonly employed. If the outcomes are
continuous, then both are special cases of the same general expression that can itself be used to specify a
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model for confounding. Throughout this section, we assume we have period exposures, and suppress the
Rt(j−1) = 0 notation.

Suppose Y is continuous. Let ∆Y
t(j+1) = Yt(j+1) −HY

t(j) and ∆X
t(j) = Xt(j) −HX

t(0) = Xt(1) −HX
t(0), where

HY
t(j) = hYt(j)(W̄

Y
t(j)) and HX

t(0) = hXt(0)(W̄
X
t−1(mt−1)) are scalar-valued functions. Suppose

Yt(j+1) = HY
t(j) + ∆̄Y

t(j)β
Y + ∆̄X

t:`β
X + Et(j), (2)

where ∆̄X
t:` = (∆X

t(1),∆
X
t−1(1), . . . ,∆

X
t−`(1)), β

Y and βX are conformable coefficient vectors, and Et(j) is

completely random zero-mean error with finite variance. Noting that ∆̄X
t:`β

X = βX
0 Xt(j) − βX

0 H
X
t(0) +

∆̄X
t−1:`−1

(
βX

1 , . . . , β
X
`

)′
, we can define the mean counterfactual corresponding to Xt(j) = a as E

(
Y a
t(j+1)

)
=

EHX
t(0)

,∆̄X
t−1:`−1,H

Y
t(j)

,∆̄Y
t(j)

{
E
(
Yt(j+1)|Xt(j) = a,HX

t(0), ∆̄
X
t−1:`−1, H

Y
t(j), ∆̄

Y
t(j))

}
= E

(
HY

t(j)

)
+ E

(
∆̄Y

t(j)

)
βY +

βX
0 a− βX

0 E
(
HX

t(0)

)
+ E

(
∆̄X

t−1:`−1

)(
βX

1 , . . . , β
X
`

)′
.

Now suppose
{(

∆Y ,∆X
)}

is a marginally WSS process. For example, this would hold for
{(

∆Y
)}

if
either the first-differenced or de-trended process is WSS: HY

t(j) = Yt(j) in the former case, while HY
t(j) =

E
(
Yt(j+1)

∣∣W̄Y
t(j)

)
in the latter case (for example), such that E

(
∆Y

t(j+1)

)
= µ (i.e., is constant). If Yt(j+1) has

no predictors, then HY
t(j) is either a constant or completely random with a constant mean (e.g., white noise).

Rewriting (2) as ∆Y
t(j+1) = ∆̄Y

t(j)β
Y + ∆̄X

t:`β
X + Et(j), we see that consistent estimation of βY and βX is

straightforward if |βY | < 1 where 1 is a vector of ones.

4 Empirical Application

A dataset of the author’s body weight and physical activity (PA) spanning six years was analyzed. Following
Partridge et al (2016) [55], we hypothesized that a change in PA regimen causes a change in weight. Out-
comes, exposures, and treatment periods were first defined or specified. DGMs for the g-formula and IPW
methods were then defined, adjusted for stationarity, and used to estimate and interpret putative APTEs.
All hypothesis tests were performed at the 0.05 significance level unless stated otherwise. Throughout this
section, we assume we have period exposures, and therefore suppress the Rt(j−1) = 0 notation.

4.1 Definitions and Specifications

The raw outcome was defined as per-day average body weight, and the constructed outcome was defined as
the average centered body weight (ACBW) per week. Centered body weight was defined as the difference in
body weight in kilograms from the empirical average body weight taken over all six years. The raw exposure
was defined as engaging in PA on a given day, where PA was defined as some combination of cardiovascular or
resistance training (e.g., running, swimming, cycling, rock climbing, weight lifting, push-ups, pull-ups). Fol-
lowing common definitions of one-week PA summary variables (e.g., minutes/week, steps/week, days/week)
[56; 57; 58; 59], the constructed exposure was defined as the proportion of days per week when any PA was
reported, among days when body weight was reported (i.e., non-missing). The resulting constructed time
series consisted of 290–293 time points, depending on the specifications below.

The N1OS treatment was specified as a regular pattern of PA spanning one or more weeks. However,
among eight highly relevant RCTs in a systematic review by Schoeppe et al (2016) [59] with PA or weight as
outcomes, studies designed to detect empirically apparent (i.e., statistically significant) effects of interventions
spanned six to 14 weeks. Likewise, many of the relevant study periods in a systematic evaluation by Afshin
et al (2016) [58] were at least two, four, or six weeks long. Hence, we did not expect to find plausibly stable
effects for periods shorter than about six weeks. To identify possible treatment period lengths, we conducted
changepoint analysis on the constructed-exposure series. Changepoint analysis detects where the mean of
an otherwise stationary series changes over time, thereby partitioning the series into a sequence of segments
of varying length [60]. Once segments were identified, they were considered to be periods with fixed lengths
{(mt)} (i.e., considered as a priori, pre-specified periods of an N1RT). For each segment, PA intensity was
defined as “high” if the PA segment mean was greater than 5/7 (i.e., indicating more than 5 days of PA
in a week); otherwise, PA was defined as “low”. The treatment level for each one-week-long segment was
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assigned to the previous segment’s treatment level, and the segment identifier was likewise changed to that
of the previous segment, thus ensuring each segment was at least mt = 2 weeks long.

The analysis outcome was defined as weekly ACBW. We assumed each treatment might require time
to stabilize, but did not thereafter destabilize until a change in level. Because both treatment levels were
mutually exclusive, the washout subperiod was assumed to be a subset of the stabilization subperiod for
any period. We assumed that effect stability of either high or low PA in any period was reached by some
stability point, i.e., k0. To model carryover or stabilization in periods shorter than k0, dummy variables
corresponding to each observed k < k0 would be included in the model as a function of previous treatment
and period length (because, e.g., the effect of low PA might already be stable if preceded by a sufficiently long
low-PA period). In addition, we posited that the current outcome might depend on the previous outcome,
and that this dependence varies by treatment level. Hence, we specified the g-formula outcome model as

Yt(j+1) = β0 + {1−Xt(j)}
{
Xt−1(1) +

(
1−Xt−1(1)

)
I (mt−1 < k0 − 1)

} k0−1∑
k=1

β0kI(j = k) + β1Yt(j)+[
β2 +

{(
1−Xt−1(1)

)
+Xt−1(1)I (mt−1 < k0 − 1)

} k0−1∑
k=1

β2kI(j = k) + β3Yt(j)

]
Xt(j) + Et(j),

where kstable = {k : k0 ≤ k ≤ mt}. The stable low-PA average baseline effect (ABE) (i.e., baseline average
ACBW during weeks of low PA) and APTE were specified as abe = E(Y 0

t(k+1)) = β0 + β1E(Yt(k)) and

apte = E(Y 1
t(k+1)) − E(Y 0

t(k+1)) = β2 + β3E(Yt(k)) for k ∈ kstable, respectively, assuming E
(
Yt(j)

∣∣j < k0

)
=

E
(
Yt(j)

∣∣j ≥ k0

)
holds (see Appendix for derivation). Hence, W̄Y

t(j) = Yt(j), and the corresponding estimators

are denoted as âbe and âpte. The IPW method would be applied in a secondary analysis, with its propensity
model specified based on our experiences fitting the outcome model.

Stability of both the APTE and ABE would be assessed and reported. We reasoned that if k0 equals
the true stability point, denoted k∗0 , then mean effects estimated for k > k0 should vary around the true
stable APTE regardless of raw series start day (i.e., the first day of both raw outcome end exposure series
used to define each constructed series). Hence, we would first vary the value of k0 from 2 to the length of

the second-longest PA segment. The corresponding values of âbe and âpte would be graphed as a function
of k0. We would also assess the robustness of our stability findings by varying the start day for each set of
analyses. Because the constructed variables were defined using seven days of data, it was reasonable to vary
the raw series start day from 1 to 7; we would also examine the findings for start days 8 to 14.

Missing constructed outcomes and exposures would be imputed as follows. To simplify the demonstration
of our methods, we assumed constructed variables were missing completely at random (MCAR). (Data were
likely to be at least missing at random [61; 62], and more refined analyses should examine the sensitivity of
results to such missingness assumptions; these are beyond the scope of this paper.) Missing values would
be linearly interpolated using na.interpolation(), and Gaussian noise added to the imputed constructed
outcomes using the empirical means and standard deviations of their non-missing counterparts.

4.2 Post Hoc Analyses

The Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit-root tests were
performed using adf.test() and kpss.test(), respectively, to assess stationarity. Stationarity tests of
{(Yt(j))} indicated that this series was likely not stationary across most start days and values of k0. However,
letting ∆Y

t(j+1) = Yt(j+1) − Yt(j) represent the change in outcome from the previous outcome (i.e., first

difference), these tests indicated that {(∆Y
t(j+1))} might have been stationary in most cases. The ADF and

KPSS tests were also used to assess stationarity of {(Xt−1(1))} in each case. Hence, we instead specified the
following two analyses.
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In Analysis 1, the g-formula was used to model the change in outcome from the previous outcome as

∆Y
t(j+1) = β0 + {1−Xt(j)}

{
Xt−1(1) + (1−Xt−1(1))I(mt−1 < k0 − 1)

} k0−1∑
k=1

β0kI(j = k) + β1∆Y
t(j)+[{

(1−Xt−1(1)) +Xt−1(1)I(mt−1 < k0 − 1)
} k0−1∑

k=1

β2kI(j = k)

]
Xt(j) + Et(j) A1-GF

for k0 > 1 (i.e., to allow at least one week for a treatment effect to occur), where kstable was specified as

before. We specified the corresponding APTE of interest as apte1 =
∑k0−1

k=1 E
(
∆Y,1

t(k+1)

∣∣Xt−1(1) = 0, k <

k0

)
− (k0 − 1)E

(
∆Y,0

t(j+1)

∣∣Xt−1(1) = 0, j ≥ k0

)
=
∑k0−1

k=1 β2k because this quantity represents the total

mean change in the outcome attributable to high PA (after a period of low PA) before the high-PA mean
effect stabilizes if E

(
∆Y

t(k)

∣∣Xt−1(1) = 0, k < k0

)
= E

(
∆Y

t(j)

∣∣Xt−1(1) = 0, j < k0

)
for all k < k0, and

if E
(
∆Y

t(j)

∣∣Xt−1(1) = 0, j < k0

)
= E

(
∆Y

t(j)

∣∣Xt−1(1) = 0, j ≥ k0

)
(see Appendix for derivation); hence,

W̄∆Y

t(j) = ∆Y
t(j). In particular, β0 = 0 if k0 = k∗0 , so for Analysis 1 we examined trends in β̂0 across different

values of k0 to assess the stability assumption.
In Analysis 2, we modeled the change in outcome from the previous period’s last outcome or the average

of its stable outcomes, whichever occurred last; i.e., ∆t(j+1) = Yt(j+1) − Y ∗t−1 where Y ∗t−1 = I(mt−1 ≤
k0)Yt−1(mt−1+1) + I(mt−1 > k0)(mt−1 − k0 + 1)−1

∑mt−1

k=k0
Yt−1(k+1). We posited that ∆t(j+1) might depend

on ∆Y
t−1 = Y ∗t−1−Y ∗t−2 (which the ADF and KPSS tests indicated may have been stationary in most cases),

and that this dependence varies by treatment level. The Analysis-2 outcome model was specified as

∆t(j+1) = γ0 + {1−Xt(j)}
{
Xt−1(1) + (1−Xt−1(1))I(mt−1 < k0 − 1)

} k0−1∑
k=1

γ0kI(j = k) + γ1∆Y
t−1+

[
γ2 +

{
(1−Xt−1(1)) +Xt−1(1)I(mt−1 < k0 − 1)

} k0−1∑
k=1

γ2kI(j = k) + γ3∆Y
t−1

]
Xt(j) + Et(j), A2-GF

where kstable was specified as before. The ABE (redefined as the baseline average change in ACBW from Y ∗t−1)
and APTE were specified as abe2 = E(∆0

t(k+1)) = γ0 + γ1E(∆Y
t−1) and apte2 = E(∆1

t(k+1))− E(∆0
t(k+1)) =

γ2 + γ3E(∆Y
t−1) for k ∈ kstable, assuming E

(
∆Y

t−1

∣∣j < k0

)
= E

(
∆Y

t−1

∣∣j ≥ k0

)
holds (see Appendix for

derivation); hence, W̄∆
t(j) = ∆Y

t−1.

A propensity model for Analysis 2 (A2-IPW) was then specified as follows. We posited that treat-
ment assignment at the start of the current period may have depended on treatment level during the
preceding period, and on changes in outcomes over the past one or two periods, defined as ∆Y †

t−1 =

I(mt−1 > 1)(Y †t−1 − Y ∗t−2) + I(mt−1 = 1)∆Y
t−2 where Y †t−1 = I(mt−1 − 1 ≤ k0)Yt−1(mt−1) + I(mt−1 − 1 >

k0)(mt−1 − k0)−1
∑mt−1−1

k=k0
Yt−1(k+1). The treatment propensity model was therefore specified as

logit
(

Pr(Xt(j) = 1
∣∣W̄X

t−1(mt−1))
)

= α0 + α1Xt−1(1) + α2∆Y †
t−1, A2-IPW

where W̄X
t−1(mt−1) ⊆ {Xt−1(1),∆

Y †
t−1}. The ABE and APTE were likewise specified as abe2 = E(∆0

t(k+1))

and apte2 = E(∆1
t(k+1)) − E(∆0

t(k+1)) for k ∈ kstable, but were instead estimated using the IPW formula
in Section 3.4. Note, however, that this standard IPW formula cannot be used to flexibly model unstable
APTEs; hence, we fit this model using only observations in kstable. This limitation (coupled with not having
known k∗0 , or if it even existed) greatly reduced the IPW method’s immediate utility. We nonetheless were
able to further assess our stability assumptions by comparing the IPW and g-formula APTE estimates (as
noted below).

4.3 Results and Interpretation

Figure 1 illustrates the trends in valid estimates across values of the assumed stability point k0 for start days
1 to 7. Findings were considered valid only in cases wherein the exposure {(Xt(1))} and the relevant predictor
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(i.e., ∆Y
t(j), ∆Y

t−1, or ∆Y †
t−1) were both deemed sufficiently stationary, as indicated by at least one of the two

test results corresponding to each series. The median trends (i.e., across all valid findings at each k0) are
also plotted. Only values for k0 ≤ 20 are shown, as estimated effects seem to have been either sparse or very
noisy past k0 = 20. For Analysis 1 (left panel), the APTE may have been stable between 11 and 17 weeks

of treatment (indicated by the median, plotted in red between the dotted vertical lines); however, β̂0 did
not seem to systematically stabilize to zero. For Analysis 2 (center and right panels), the g-formula APTE
may have been stable also between 11 and 17 weeks of treatment; however, the ABE seemed to generally
increase. These findings were reflected in the corresponding IPW plots. A sensitivity analysis using the raw
series for start days 8–14 produced somewhat qualitatively similar results (see Appendix).

For illustration, we report and interpret the set of findings for start day 3 at k0 = 11, marked with
black asterisks in Figure 1. The valid Analysis-1 estimates were âpte1 = −1.08kg and β̂0 = −0.01kg, with a
residual sum of squares (RSS) of 104.33. The corresponding estimates for Analysis 2 were âpte2 = −1.12kg

and âbe2 = 0.60kg, with a RSS of 184.91. Our Analysis-1 results meant that 11 weeks of high PA after a
period of low PA may have reduced ACBW by about 1.08kg on average, where the estimated APTE may
have been stable between 11 and 17 weeks of high PA. Our Analysis-2 results meant that 11 weeks of high
PA may have reduced ACBW by about 1.12kg on average, while low PA may have increased ACBW by
about 0.60kg on average; the estimated APTE may have been stable between 11 and 17 weeks. Both sets
of findings qualitatively resembled those in Naimark et al (2015) [57] in association (though not necessarily
causation): After 14 weeks, the intervention group (i.e., who used a health-promoting app) increased their
PA by 63 minutes per week on average, while control subjects decreased theirs by an average of 30 minutes.
Intervention subjects concurrently lost an average of 1.44kg, while control subjects lost an average of 0.13kg.
Our observed and predicted outcomes are plotted in Figure 2. The top panel shows that the Analysis-
1 predictions modestly fit the analysis outcomes, while the quality of fit of Analysis-2 predictions in the
bottom panel was somewhat mixed. In particular, because Analysis 2 assumed APTE stability after 11
weeks, it failed to capture trends in analysis outcomes during the high-PA interval roughly between time
points 20 and 90. This can likewise be seen roughly between weeks 40 and 100 in Figure 3.

As a sensitivity analysis, we assessed the analytical impact of raw-variable missing data. The median
proportions of missing values for weekly ACBW and proportion of PA days across all values of k0 and all
14 start days were 0.134 (range: 0.127 to 0.158) and 0.052 (0.041 to 0.055), respectively. For each analysis
outcome and predictor, we weighted each analysis outcome by the total proportion of days without missing
values out of all possible days that could have been used in its derivation. Bigger analytic weights corre-
sponded to fewer missing raw values (i.e., analytic weight of 1 for no missing values, less than 1 otherwise).
The resulting weighted generalized linear model (weighted-GLM) analyses produced similar findings to the
unweighted analyses (see Appendix).

A few immediate modeling improvements could be made in a future study by noting the following limita-
tions. Our self-tracked data did not include reliable measurements of dietary factors, which likely confounded
the exposure-outcome relationships in both analyses. We also did not investigate reverse causality (i.e., the
effect of theoretically manipulable weight on PA propensity, e.g., through examining dietary patterns as
causes), which might help disentangle possible causal feedback structures between ACBW and PA intensity.
Factors such as aging may also play a role in modifying APTEs over time (e.g., by inducing a time trend in
an APTE itself). While we did not address moderation or mediation of APTEs, our framework does allow
formal specification of such contextual influences. Finally, the impact of noise on the first-difference outcome
in Analysis 1 could be characterized using simulations in order to assess its impact on both the analysis
procedure and APTE estimates.

5 Discussion

We showed how a counterfactual framework based on n-of-1 randomized trials can be used to specify and
estimate causal effects using observational n-of-1 time series data. Our framework is modular: It allows for
nesting such that each time point t(j) can itself be specified as a set of sub-points, thus permitting finer-
grained specification of causal relationships. The framework might also accommodate traditional RCTs
or series-of-N1RTs (i.e., by adding the subscript i to index study participants), as well as help formalize or
model more complex causal mechanisms at different scales (using, e.g., hidden Markov models, control theory
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and dynamical systems models), or mechanisms that better account for context (e.g., sufficient-component
causes [63; 64; 65]). In the future, we will formalize this framework in terms of causal graphs in order to
ease conceptualization of causal structures.

In an N1OS, a priori definitions and specifications that would be used in an N1RT may not be reasonable,
feasible, or even possible. While the analytical goal in an N1RT is to estimate a posited causal effect, the goal
in an N1OS is instead to discover which effects to posit in the first place (i.e., causal discovery). We distill
Section 4 into the following general six-step N1OS procedure, which might be used to encourage discovery of
estimable stable APTEs that can address the original research hypotheses by eschewing stationarization of
the treatment. 1. Use relevant research (both idiographic and nomothetic) to generally define outcomes and
treatments. 2. Specify treatments, and search for candidate sets of treatment periods. 3. Specify outcomes
and stable subperiods. 4. Specify APTEs and models. Assess whether or not invariance could hold. 5.
Conduct main analyses. Assess stationarity. 6. Conduct sensitivity analyses, and address missing data.
These steps can be repeated as the exploratory study evolves, and relevant analytical developments should
be reported. The specifications that yield the best fit and interpretability might be highlighted as yielding
the most conclusive findings. Our Section 4 analyses also highlighted the commonly encountered analytical
tradeoff between APTE estimability and interpretability.

Statistical learning methods can be used to strengthen the search and modeling components in the above
procedure. These include the search for sensible treatment periods or stable subperiods (e.g., through time
series clustering), and the search for the outcome and propensity models that fit the data well. In particular,
cross-validation and predictive modeling may be quite well-suited to finding the best-fitting DGMs for the
g-formula, IPW, or doubly robust estimation methods. This sort of “causal predictive modeling”[66] would
incorporate principles of statistical estimation and inference, causal modeling, and statistical learning. A
number of investigators have taken a similar approach towards such causal discovery (i.e., what Gelman and
Imbens, 2013 [67], call reverse causal inference), in particular van der Laan et al (2009) [68], Austin (2012)
[69], Athey and Imbens (2015) [37], and Spirtes and Zhang (2016) [66].

We are excited to see how related efforts may likewise help advance idiographic causal discovery in the
fields of personalized health and medicine. Still, in pursuing this line of inquiry, it should be kept in mind that
“for causal inference, issues of design are of utmost importance; a lot more is needed than just an algorithm”
[70]. Rubin (2008) [71] sums it up nicely: “For objective causal inference, design trumps analysis.”
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Figure 1: Trends in valid (i.e., using stationary series) estimates and residual sums of squares (RSSs) across
values of k0 for start days 1 to 7. (In each graph, different line types indicate different start days, and the red
line indicates the median value. In the top row, the dotted lines demarcate an interval with a possibly stable
APTE. In the left and center columns, the black asterisk indicates start day 3 at stability point k0 = 11,
which was chosen for illustration in Figures 2 and 3.)
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Figure 2: Analysis outcomes: Observed and predicted outcomes using the g-formula, for start day 3 at
stability point k0 = 11. (In each graph, high and low physical-activity analysis outcomes are plotted as black
and gray circles, respectively. In the left column, the red and blue lines indicate predicted values for Analyses
1 and 2, respectively. In the right column, observed versus predicted analysis outcomes are plotted.)
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Figure 3: Average centered body weight: Observed and predicted outcomes using the g-formula, for start
day 3 at stability point k0 = 11. (The black and gray circles indicate analysis outcomes corresponding to
high and low physical activity, respectively, and the red line and blue asterisks indicate predicted values for
Analyses 1 and 2, respectively.)
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